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ABSTRACT Lot-Sizing is a crucial decision arises, in many classes and variants, in the
production planning. The paper focuses on the single-stage. dynamic, multi-item capacitated
lot-sizing problem (CLSP) with continuous setups. It classically deals with the issue of
determining a production plan for items in terms of quantities and their timing over a discrete
finite horizon, so as to satisfy a known variable demand in each period without incurring
backloggs and minimize the setup, production and holding costs. A finite production capacity
of a single resource is shared by all items produced in each period. The literature showed that
this problem is NP-hard in feasibilty and optimality. A special heuristic method is developed
for small products. The mathematical models consider backorder and under capacity costs. The
problem is reduced to a capacity distribution under” special propositions and solved in two
phases by using the fixed charge transportation problem (FCTP.) The first phase agzregately
distributes the capacity between periods while the second decormposes this distribution into
separate periods lot-sizing problems solvable as a sequence of FCTPs.

Keywords: Multi-ltem: Dynamic Demand: Lot-sizing: Capacity Distribution: Decomposition

Introduction and Literature Review
Lot-Sizing problem—in its classes and variants—is defined by the nature of
demand, available resources, number of items. production facility and planning
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time horizon. Two classes are common in practice, first class is known to be
the economic lot-sizing and scheduling problem (ELSP) which models the
situation of producing several items—with high demand, over a continuous
infinite planning horizon, and under limited capacity. ELSP determines
batching and sequencing of production items with or without setups in a single-
stage or multi-stage facility (Elmaghraby, 1978; El-Najdawi, 1994; Gallego
and Joneja, 1994; Bollapragada and Rao,1999; Federgruen and Katalan,1997.)
The next class is known to be capacitated lot-sizing problem (CLSP) which
suits dynamic demand over a finite discrete planning horizon. The production
in each period is constrained by a finite capacity and no backorders are
permitted. CLSP does not consider product sequencing and scheduling within a
period. The reader may refer to Drexl and Kimms (1997) for the latter class
and other lot-sizing problems, The CLSP arises in different variants and
consisders, in most sectors, dynamic multi-item demand. Some of studies have
taken into account setup time and cost in single-stage models (Trigeiro et al.,
1989; Amentano et al., 1999; Vanderbeck, 1998) and others have implied
negligible setups (Hindi, 1995.) Ozdamar and Barbarosoglu (1999) discussed
the multi-item multi-stage CLSP and developed a hyprid model incorporates
the loading 1ssue; moreover, they mentioned other variants of the problem.

A quick review about pioneering work on the single stage problem with and
without setup time can be found in Trigeiro et al. (1989). The CLSP considered
here (§2) is a single-stage, dynamic, multi-item capacitated lot-sizing witl
continuous setups. It is concerned with finding the lot sizes of several products
over a discrete finite horizon divided into T periods, so as to satisfy a dynamic
demand ineach period and minimize the costs of setup, production, inventory,
backlogging and under-capacity. A specific production environment is
assumed and a finite capacity is imposed for all products in each period. The
setup is continuous in the sense that production occurs at any value up to
capacity available in each period. A new heuristic methodology based on fixe
charge transportation problem (FCTP) is developed. [t reduces the problem, by
using proposed parameters, to a capacity distribution solvable in two phases.
The production capacity is distributed between periods in the first phase. The
second phase decomposes into T single period sub-problems solvable as
FCTPs. The solution of each sub-problem satisfies the demand of all products
in each period through the distribution of the shared capacity. Each time a
period is taken as demand period while the supply periods are predetermined
from the first phase. The sequence in which periods are manipulated for
demand is controlled by using some heuristic rules. This methodology is
developed to accommodate a system having special nature for products and
production processes. Analysis of the FCTP is not involved in the interest of
this paper whearas it can be looked in Lamar and Wallace (1997), and Adlakha
and Kowalski (1999)

The classical formulation of the problem is a mixed integer liner
prograniming which minimizes the total costs of setup, production, and holding
without incurring backlogs (a model in Thizy and VanWassenhove, 1985)
This problem is known to be NP-hard even for a single item. Such problem
complexity is discussed in details inChen and Thizy (1990). The solution of
the problem includes optimal methods (Chen and Thizy, 1990) and heunstics
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(Eisenhut, 1975; Dixon and Silver, 1981; Dogramaci et al.. 1981; Thizy and
VanWassenhove, 19835.) Because of complexity, most of research (heuristics
and optimal methods) conducted some mathematical relaxations for the
problem constraints and decomposed the problem inte uncapacitated partial
single-item sub-problems. The most often used approach to solve the problem
optimally is to obtain a lower bound on its value—on the basis of generalized
duality theory, by relaxing the capacity constrainis—as a fathoming
mechanism in an optimal enumerative search (Thizy and VanWassenhove,
1985.)

The partial Lagrangian relaxation of capacity constraints is a popular way
results in a problem decomposes intc a set of independent, uncapacitated,
single product lot-sizing problems. The popular dynamic programming
algorithm developed by Wagner and Whitin (1958) can be used to solve those
sub-problems (Pan, 1994.) Thizy and VanWassenhove (1985} have proposed a
method based on such relaxation and incorperated a primal partitationing
scheme with a network flow problem to obtain some feasible solutions. They
implemented the subgradient optimization algorithm and transportation
problem to update the value of Lagrangian multipliers. Trigeiro et al. (1989)
adopted this relaxation and subgradient optimization in their method to solve
the problem with setup times, They followed a heuristic production smoothing
procedure to generate feasible selutions.

Chen and Thizy (1990} have presented an attractive long analysis for the
problem relaxation ways and relaxable components (binary variables, setup
constraints, demand constraints and capacity constraints.) They focused on
optimal methods and compared the various Lagrangian relaxations of the
classical formulation especially the relaxation of the capacity constraints. They
also discussed the linear programming relaxation and calculation of lower
bounds via the known traditional algorithms: column generation; subgradient
optimization; cutting planes and variables redefinition. Moreover, they
analyzed other formulations (Eppen and Martin, 1987, Pochet and Wolsey,
1986) and mentioned the capability of some metheds to accommodate setup
times, backlogging and flexible capacities. Recently, Armentano et al. (1999)
considered the setup time and cost and formulated the problem as a network
flow model. A branch and bound method is proposed to solve the model where
bounds are generated by the linear programming relaxation based on the
capacity constraints. However, up to now, Lagrangian relaxation yields results
better than linear programming reiaxation.

Constantino {1998) discussed another concept for the problem relaxation—
the polyhedra associated to the classical formulation with setup times and
variable lower bound constraints. The presentad model is based on the model
presented in Trigueiro et al. (1989). This concept seems to be not more than a
theoritical analysis to the mixed integer models and therefore it can't be
applied to the large scale problems.

However. as a result of the continuous change in the nature of products and
markels. the problem size and parameters can’t be assumed stable all times,
Therefore verifying an optimal or even feasible solution is a difficult task and
the results may be confusing when the problem is encountered in practice. It is
proposed to adopt special heuristic methods accommodate the problem
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according to a classification for the production processes. For example, there is
a tendency towards more flexible forms of production. which imply
insignificant setups; thus making it possible to apply a method like what
presented by Hindi (1997) in which the problem is formulated as a capacitated
transhipment problem and solved as a simple network flow problem. Also,
away from sophisticated mathemitical methods, an example tor more simple
and special method exists in Allen et al. (1997); the method is developed for
schedulling a simple system—packaging lines at a major food manufacturer,
Schedules were produces by using Excel and Visual Basic macros. Moreover,
genetic algorithm is also used to simplify the solution of the problem with the
most expected parameters (Hung et al., 1999.)

The multi-item CLSP in general seems to be a well analyzed problem.
Therefore, concentrating attention have been to the previous work which was
used as a guide for the special methodology developed in this paper. The next
contributions include: summary of the assumptios which fit the special
problem, design of symbols—parameters and decision varaibles—and
developed functions (§2.2); formulation of the problem as a mixed integer
linear programming (MILP) which modifies the classical formulation (§2.3);
reduction and decomposition of the problem as a capacity distribution
according to three propositions (§3.1): a solution procedure with a nemerical
llustration of the final problem (§3.2): and conclusions (§4.)

Capacitated Lot-Sizing Configuration

Problem features

As declared before, this study is concerned with single-stage, dynamic, multi-

item CLSP. The problein is developed through a sequence of mathematical

models. The main features taken into account are summarized below:

1. Demands, capacity absorption rates, and costs of all products are known.
independent, deterministic, and dynamic over a discrete planning horizon
divided into independent periods. Note that the method 1= alzo valid for sto-
chastic nature except demands;

2. Manufacturing proeess 1s rezarded aggregately in a single stage as a com-
men facility for all products, i.e. end product is the objective of lot-sizing:

3. A single global constrained (capacitated) resource is considered gach time
the problem is manipulated:

4, Capacity absorption rates of products are small and near in values;

Unit production costs are near for all products as well as holding and back-

crder costs;

Backlogging is permitted over the horizon except at the start and end,

whereas safety stocks are not planned whenever. An upper bound could be

imposed for backlogging in each period;

Production setups are not carried from period to the next:

Lots can’t be split:

Resource eapacity and iis available expansion in each period is predeter-

mined;

10.Producing a product in a period incurs a setup cost but with insignificant
time. The semp  is continuous. Le. the production can take any value up to
capacity once the facility is properly setup:

o

N
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11.Lead time in each period is negligible and periods are not short;
12.8equencing of products within a period is left for next production planning.

Terminilogy and nomenclatures
The problem parameters, functions and decision variables are defined
according to their appearance in the paper as follows:

N
T
Si
d

Pu

24

G

Wy,

Wp

number of products in the system;

number of periods in the planning horizon;

production setup cost of product 7 in period ;

demand for product i in period

on-hand inventory of product / at end of period #

backorder position of product i at end of period 1,

amount of product / produced in period /;

binary variable has value [ if x;>0. 0 if x,~0;

sufficient large positive value; see mixed integer linear programming.
unit production cost of product / in period £

unit holding cost of product i from pernod f to period r+1;

unit backorder cost of product i from period 1 to period 1+1 ;
opportunity cost of losing a capacity unit;

capacity consumed by each unit-—absorption rate—of product i in period ¢
capacity of the constrained resource in period f;

capacity associated with d,;

capacity associaled with x,;

capacity associated with 7,;

i

capacity associated with L,;

= Zr: a,d, /i 2 ad, Vi, (i)
1=1

EE A

A
proposed system-weight (0 <, <1, Za, =1) for product i, denotes its

=l

contribution, works as relative frequency;

3 :," .\’.
Y ad, 1YY ayd, WL, {ii)
i=|

1=l =i

proposed systerni-weight (0< 4, <1, :}:,B, =1) for period 1, denotes its
=
contribution. works as relative frequency:
proposed weight for helding cost referring to the nature of products and
storage facility:
proposed weight for backorder cost referring to the nature of the market:
iy

&y
=282 a7 (i)

t=1 1=l it

expected internal production cost associated with each capacity unit:
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T AY h
D o= w,,(Zﬂ,Za,—i , {(iv)
t=l =l a

"

per-period expected internal holding cost associated with each capacity unit;

7 A) bi.f
p3 =1vb(z,6’,2a,a— , (v)

=] =] t

per-period expected internal backorder cost associated with each capacity
unit;

S, maximum total production setup cost in period f:

¢+ total capacity consumed in period f;

c! total capacity associated with inventory at end of period 4,

¢! total capacity associated with backordering at end of period ¢;

Sy pseudo setup cost assigned in period i (as supply) for period / (as demand),
Cy capacity transported between periods / (as supply) and j (as demand);
¥y binary variable has value 1 if C;>0, 0 if C;=0;

ptpyif i<y
Pi =94 tf i=5 Vi, j=12....T, {vi)
pr+py it i>

expected internal transportation cost between periods 7 (as supply) and (as
demand) for each capacity unit;

-1
(P + Zhr‘k)/air if r<t

k=r
P =<p,.fa, if r=¢t VireH,;t, (vil)

r=1

(pir +Z‘b1k)/air if r>1

k=t

unit transportation cost of product / between periods r (as supply) and 1 (as
demand);

C.» capacity consumed in period t to satisfy a part of demand of product /in
period 1,

H  set of periods in the time horizon;

H, set of periods having the production which satisfies demand of period r;

Cy capacity consumed in period rto satisfy a part of demand (mixed) in period
r

¥z binarv variable has value 1 if C,, >0, 0 if C,, =0.

These notations will be followed hence and forth, without further details. in
modeling, relaxing. decomposing. and solving CLSP (§2.3, §3.1, and §3.2.) .
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Original formulation of the problem

The classical formulation is adopted (Thizy and VanWassenhove, 1985) anc
extended to accommodate backlogging and under-capacity cost, Hence, the
single-stage, dynamic, multi-item CLSP with continuous setups can be
formulated as follows.

r N
R:Min Z=7% (,Su + puxy +hly +0,L,) + Zu (C, Za., %) (D
r=1 i=l =]
subject to dy=x, =1, +Ly+Liy~Lg,y Vit (2)
Zaﬂ ri' "‘ .f V[ (3)
X, smy, Vit (4)
y, {01} Vit (3
LigoLyp =0 Vi (6)
x”,[",f_” 20 Vi,f (7)

The objective function (1) minimizes the total costs of setup. production,
holding, backlogging, and under-capacity. Constraint (2) includes the flow
balance between demand, production, on-hand inventory, and backorders.
Constraint (3) limits production up to an available capacity and (4)&(5) assures
that setup cost is incurred only when a product is produced in a period (m is a
very large positive value.) Without loss of generality. initial and final
backlogging are set to zero (constraint (6).} Constraint (7} is set for
nonnegativity of production, on-hand inventory and backorders.

Capacity Manipulation of the Problem

Relaxed formulations and decomposition

Referring to problem Py, the variables represent number of units can be easily
replaced with the equivalent capacities. Then the objective function (1) can be
wrillen as

B Min Z = ZZ(},,S,,+‘D”C+ o b2 c,,)+zu(c Zc,,) (8)

1=l =1 ,;

while the problem constraints are modified asshownin (10to 15.) The next
two propositions in addition to the cost functions developed in §2.2 modifies
problem P, 10 a complete capacity form as declared in model (9 to 13)
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PROPOSITION [|—Suppose that alarge CLSP, with a single capacity con-
straint, arises with preducts having consumption rates a, vary in a specific
pattern (determined by a frequency distribution for ¥T values} can be repre-
sented by a single random variable with estimable mean and standard devia-
tion. Thus making p./a., hi/a, and b,fa, can be represented by independent
random variables with estimable means py, p2 and p; and standard deviations
a1, or and oy respectively even if the numerators are not random variables.

PROPOSITION 2—Based on proposition I, if mean and standard deviation
of a, is small (e.g., for instance of time capacity it rates in minutes), the prob-
lem can be approximated by capacity distribution problem P2 which could be
reduced to problem FP;. Then

rox 7 i
IDI : A/[in Z = Zz(yusif + p|Cl: + pZCI-: + pJCrf) + ZH,{C_, - ZC;) (9)
1=l 5=l 1=l 1=1
subject to C,‘f =C; —C,i +C,.’(,_l) + C,f —Cj,ﬂ, Vit {(10)
~
YCisC W ()
i=l
Ci<my, Vit (12)
yi €401} Vit (13)
Ch.Ch=0 Viu (1)
cr.ehclb>o vi (1)

[

Substituting with the cumulative quantities changes the model P; to

r T
P3 : M”? Z = Z(Sr + plcrx + pZC:' + pJCJL) + Zul(cr _Crr) (16)
=1 1=l
subject to cr<c, vt (17
X
S,<>8, v (18)
=1
§5,.C7.CI.Ch=0 vt (19)

PROPOSITION 3—The problem Pacan be decomposed into two phases of
FCTPs such as problem P;. (20 to 25) and problem P32 (26 to 32). if the setup
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costs are continuous. small. and not significantly different. Problem Py repre-
sents the first phase in which the available periodical capacities will be distrib-
uted between the horizon periods according to demands. Problem FPy.; repre-
sents the second phase which in tum decomposes into T sub-problems to
distribute each period capacity—assigned in the first phase-—between the
products. Hence, the final plan appears easily as product quantities produced,
stored, and backordered in each period.

T
First Phase Problem: P,_| . Min Z, = ZZ(yU-S,-}. +p,;Cy)

subject to

i=l j=1

iC,;,S %dfq vi=12,..,T
=l k=1

Cu smy,; vi,j=12,.,T
yyel0ly Vi j=12..,T
C,2z0 vij=L2...T

3

(20

(2h)

(22)

(23)

il

Second Phase Problem: P,_, : Min Z,= Z Z Z(ymS,, +0.C,.05.. €8,

subject to

e reH,

C,<my,, ViteH;t
Yo e{0ly VireH,;f
Zy,-ﬂ=l viire H,
e
v
ZC,_.,:C,, JreH, ;¢
r=|

C

<d,  Yia

=M, a,
C.z2z0 VireH,:r

=]

(26)
(27

(28)

{29)

(35

(32)

9
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Solution procedure and numerical illustration

Table [—Appendix shows the data of atypical problem has six production-
distribution periods (7=6.) The aspired plan is capacitated with time—a com-
mon single constraint problem. The proposed system dimensionless weights &
and S were calculated and checked in this table. Intemnal cost parameters per
unit capacity py, p2. and py were calculated in Tables II, III, and IV—Appendix
respectively. As mentioned before, the problem is reduced to a decomposed
FCTP problem explained by two formulations Py & Pi.;. Therefore, the solu-
tion procedure includes two phases. The first phase distributes the capacities
between periods using the FCTP (see Adlakha and Kowalski. 1999 to know
more about FCTP) which is tabulated as shown in Table V—Appendix of the
numerical example. The value of §; is not a real setup but it is set to avoid the
extra partitioning of the available capacities; it could be experimented over a
range of values less than §, or set as being per unit capacity. After constructing
and solving Table V. the procedure transfers to the next phase. The first phase
model of the current example is solved using an LP Software which results a
time distribution as shown in Table VI—Appendix. The second phase solves T
FCTPs, each of them can be tabulated in a sheet similar to Table VII—
Appendix. Each table considers a period for demand and distributes the
assigned capacities between the products existing in that period. The salient
question now is what is the order in which the 7 periods are manipulated and
what is the effect of this order? It is recommended to rank each period order
according to: Za,d,, Zp,+ZZ(h;y); ZZ(b;) and ES;. Hence, the average rank is
followed to order the periods in an ascending order. Otherwise, all orders could
be tried. Ifa produet is assigned to a period for production, a zero setup cost is
assigned to this product in this period in the next step.

The Spreadsheet of MS-Excel can be adopted as a calculation engine besides
any LP Sofiware. Note that the cited tables could be used to summarize the
problem and they don’t need to further explanation. Also, the guiding heuristic
rules may be slightly modified by using for instance some statistical quantities,

Discussion and Conclusions

A special purpose heuristic methodology was developed to solve the single
constraint, single-stage, dynamic, multi-item CLSP with continuous setups. It
is particularly designed for planning a special class of products—coalesced
products and small discrete products, which are produced in large quantities.
The objective is to set a production plan in tenms of quantities and timing at the
possible minimum sum of the setup, production, holding, backorder, and under
capacily costs without overtime. The methodology consists of two phases
based on distributing the capacities between the periods, and hence between the
products in each period instead of distributing the products themselves. First
solves one FCTP and second solves a sequence of FCTPs. A set of weighting
parameters was proposed to relax and decompose the problem into this form
which is found amenable than those in the literature. The routine ol formula-
tions starts with the known classical MILP formulation. The literature proved
that this problem is NP-hard even for asingle item (Chen and Thizy. 1990.}
Therefore. several researches confirmed the essence of developing special
methods to accommodate real industrial cases {Allen et al.. 1997}
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As a matter of fact, the cost structures are never really known in advance and
the leaming factor can’t be neglected. Therefore, those structures were dealt
with as if they are stochastic. For instance, the cost parameters p|, pa and py—
stated in proposition 1--reflect this assumption which can be realized if their
variances would be small. Thus making the proposed methodology performs
quite well in the cases of coalesced products—pharmaceuticals, chemical fluids
and powders, metal sheets, etc. However, this paper demonstrates a new view
for the problem that aggregates and distributes capacities of a single resource,
although it may lead to some unexplained insignificant losses.

The findings indicate that the setups is the unique parameter which may limit
the methodology applications and extensions. Therefore, it may reach about
100% if the setups approaches zero and absorption rates become smaller. It is
interesting that this methodology seems to be more efficient in handling the
very large demand problems better than those small demand problems. We
finish by listing topics for further extensions: using additional constraints
{Glover and Ross,1974); merging the more-for-less paradox in case ofin-
creasing demands (Adlakha and Kowalski, 1998); using the concept of multi-
commedity (Evans and Jarvis, 1977); and sequencing the products in each pe-
riod.

However, further work remains to be done on such CLSPs because no
known method guarantees optimal or even feasible solutions. In other words, it
can be said that it is difficult to include and manipulate all parameters in the
same way for such NP-hard problems. Therefore, the developed work follows
the tendency towards providing special methods which accommodate a limited
range of problems like those which imply limited setups, eonsumption rates of
capacity, and/or costs. Moreover, the proposed method can implement the
problems of stochastic nature except demand.
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Appendix: Numerical summary of the solution procedure

This appendix comprises seven tables demonstrate the steps of the solution
procedure by using numerical data of four products. The first tabie cxhibts the
ong-nal data of the four products {(demand per period,; unit costs of production,
holding, and backorder; and absorbtion rate of the time resource) in addition 1o
the primary calculations of the proposed parameters. The second. third and
fourth tables exhibt the calculations of the internal costs {preduction. holding
and backorder.) Table five demonestrates the first phase FCTP distribution.
Table six exhibts the output of an LP Software soltion of the fifth table. Table
seven demenstrates conducting the second phase to a sample period (sample of
six tables)}—distributing the capacity between each period as a source and the
six periods as destinations.
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Cost | Six Periods
Product 1 2 3 4 5 G
| 0.22901 0.23896 0.24983 0.26172 0.2748} 0.28927
2 0.19482 0.20329 0.21253 0.22265 0.23378 0.24608
3 0.18217 0.19009 0.19873 0.20819 0.21860 0.23010
4 0.21816 0.22765 0.23800 0.24933 0.26180 0.27558
za(p/av) 0.82415 0.85999 0.89908 0.94189 098898 1.04104 Table IL.
Byalplav)  0.16128 0.11667 0.12011 0.17158 0.19903 0.15785 Production cost
shsa(plav) 092653 expected internal-production cost/min. caleulations.
Cost 2 Six Perjods
Product | 2 3 4 5 6
l 0.02290 0.02390 0.02498 0.02617 0.02748 (0.02893
2 0.01559 0.01626 0.01700 0.0178% 0.01870 0.01969
3 0.03643 0.03802 0.03975 0.04164 0.04372 0.04602
4 0.03636 0.03794 0.039567 0.04156 0.04363 0.04593
ZC((/JI':’JV) 011128 0.11612 0.12140 0.12718 0.13334 0.14056 Table T11
Bsa(hiav)  0.02178 0.01575.0.01622 0.02317 0.02687 0.02131 Holding cost
vhyalhlav)  0.12510 expected internal-holding cost/min. calculations.
Cost 3 Six Periods
Product | 2 3 4 3 6
l 0.03817 0.03983 0.04164 0.04362 0.04580 0.04821
2 0.03896 0.04066 0.04251 0.04453 0.04676 0.04922
3 0.04554 0.04752 0.04968 0.052035 0.05465 0.05733
4 0.03636 0.05794 0.03967 0.04136 0.04363 0.04393
sa(biav) 0.15903 0.16595 0.17349 0.18175 0.19084 0.20088 Table 1V,
ﬂza(b/av) 0.03112 0.0225! 0.02318 0.03311 0.03841 0.03046 Backorder cost
calculations,

vhyal(blav)

0.t7879 expected imiernal-backorder cosiiin.
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Periods (7. 1 2 k] 4 3 6 Available
1 09265 1.0516 1.1767 13018 14269 1.5520 23 24840
2 11053 0.9265 1.0516 1.1767 13018 14269 25 27000
S o e e pen 2 e,
5 L6417 14629 12841 11053 09265 10516 22 23760 [ CTPinfirst
6 1.8205 1.6417 1.4629 1.2841 1.1053 09265 22 23760  Phase: costs py
Required (days) 26.111 18.102 17.824 24.306 26.852 20.231 146880 ) in § per
Required(mins.)) 28200 19550 19250 26250 29000 21850 144100 -2780 minute and Sy
Internat Costs .= 0.9265 p=0.1251 2y=0.1788 § per min., §;=0 in 3.
Periods Periods as Destinations Unused
as Sources | 2 3 4 5 6 Time
| 24840 .
2 3360 19550 1310 2780
3 o 17940 3820 Table VI.
4 20430 3330 Time distribution
5 S 23760 (minutes)
6 e e 21850 between periods.
Assignment Period No. (1) as a Destination Required
Order No. (1) Periods as Sources Time
Poduct 1 2 3 4 5 6 inmins.
1 (p) 1.0 30 M MMM 7200
S 3000 3000 M MM M
24p) 2.3 25 M MMM 95000
S 3500 3500 M MM M
3p) 2.0 20 M MMM 6000
S 320,00 3200 M MM M Table VII.
4{p) 3.0 3.0 M MMM 6000 FCTPs of the
s 300.0 3000 M M M M secand phase: a
Available (mins.) 24840 3360 0 0 O 0 28200 sample table of
Costs: S, in S endp, ., in $ per minute (capacity unit), six tables.
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